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Abstract. The W -fusion scattering process W+W − → ZZ for off-shell W bosons is studied, focusing
on the issue of its high-energy behaviour which is known to be anomalous. It is shown that the unitarity
violating terms can be isolated and extracted in a well-defined and efficient way using the pinch- technique.
This restores the good high energy behaviour of the cross section and, in particular, makes possible the
identification of the Higgs resonance in the invariant mass distribution mZZ of the Z pair. The discarded
terms, which are proportional to the off-shellness of the W bosons, cancel against similar terms originating
from the remaining diagrams for the full physical process f1f2 → f ′

1f
′
2ZZ. This cancellation ensures

the gauge invariance of our result, which therefore constitutes a meaningful separation between signal
and background when they both contribute coherently. Equipped with this result, we are able to define a
resonant approximation for the process pp → ZZ + 2 jets + X, which circumvents the problem of good
high energy behaviour without having to resort to the lengthy calculation of the complete set of diagrams.
In this approximation only the W - and Z-fusion signal graphs are included, i.e. the ones which contain the
Higgs resonance. We have verified that the approximate resonant cross section describes very well the full
result not only close to the resonance but also beyond it.

1 Introduction

The discovery of the Higgs boson is the primary physics
goal of the LHC pp collider. For low Higgs masses the dom-
inant production mechanism is gluon fusion, gg → H, but
for a heavy Higgs there is also a significant contribution
from the W -fusion process, WW → H, where the W s
are emitted from incoming quarks.1 Since a heavy (Stan-
dard Model) Higgs is most easily detected in the ZZ decay
channel, the process of interest is WW → H → ZZ. How-
ever the s-channel Higgs resonant diagram is only one of
several diagrams contributing to this scattering process,
the other diagrams containing, for example, trilinear and
quadrilinear gauge boson vertices. In fact the W -fusion
process

W (p1)W (p2) → Z(k1)Z(k2) (1.1)

provides a classic illustration of the subtle gauge cancella-
tions encountered in non-Abelian gauge theories. The role
of the Higgs graph is crucial in obtaining a cross section
which is well behaved at high energies, see for example the
discussion in [1]. In practice, however, one actually has to
consider the case of off-shell W -fusion, since W s emitted
from the incoming quarks have q2 < 0. But when the W s
are off-shell the delicate gauge cancellations responsible
for the good high energy behaviour of the amplitude are
spoiled. Unitarity is badly violated by terms which are

1 See, for example, the review in [1].

proportional to the off-shellness of the W s [2],

W1 = p2
1 − M2

W

W2 = p2
2 − M2

W . (1.2)

Unitarity is only restored for the physical cross section
when the full set of diagrams for the qq → qqZZ process
is taken into account [2], [3], i.e. not just the subset con-
taining WW → ZZ. This involves a very large number of
additional Feynman graphs.

Since in the region of MZZ ∼ MH the on-shell WW →
ZZ proces is clearly well approximated by the s-channel
Higgs resonance graph (at least for MH not too large so
that ΓH � MH), it is interesting to ask whether the full
qq → qqZZ process, including off-shell WW scattering,
can be similarly approximated, while retaining good high-
energy behaviour. In other words, one seeks a minimal set
of diagrams that include the Higgs resonance while at the
same time not spoiling the delicate gauge cancellations.

To begin with one could consider only the Higgs res-
onant diagram contributing to qq → qqZZ. However this
leads to a cross section that behaves badly at high ener-
gies, growing like s. As a result the shape of the differential
cross section around the resonance cannot be trusted. As
a next step one could extend the set to contain all six of
the W -fusion diagrams of process (1.1). As already men-
tioned, there are potential cancellations at high energy in
this case but the cross section actually respects unitarity
only when both W s are on-shell. In the off-shell case when
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Fig. 1. The six W fusion graphs TWW and relevant kinematics
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the six diagrams are embedded in qq → qqZZ, see Fig. 1,
this is not true anymore and in fact the situation gets even
worse. The cross section now grows as s2 with the leading
terms always proportional to the off-shellness of the W s,
i.e. W1 and W2. For high enough energies the Higgs reso-
nance gets completely swamped by these off-shell terms
and the differential cross section exhibits no resonance
structure. Only when the full set of graphs (Figs. 1–3)
is considered does one obtain a cross section that behaves
well at high energies. In this set large gauge cancellations
take place and the resulting cross section exhibits the same
behaviour as for on-shell Higgs production through the
process qq → qqH, namely it grows slowly as `n(s) for
large s.
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Fig. 3. The Tff graphs. The graphs not shown refer to permu-
tations of the relative positions of the Z bosons on the fermion
line to which they are attached

The bad high-energy behaviour of individual diagrams
can be attributed to the following two factors: i) the pres-
ence of the trilinear gauge boson vertices, and ii) the fact
that the Z bosons can be longitudinally polarized. Both
these factors bring extra momenta in the numerator of
Feynman graphs. In fact the polarization vector of an en-
ergetic longitudinal Z boson behaves as

εµ
L(k1) =

kµ
1

MZ
+ O(MZ/EZ) . (1.3)

As a result of the MZ factor in the denominator, the
cross section can grow as powers of s/M2

Z . However the
momenta introduced by these factors into the numera-
tor of the Feynman graphs are at the same time the mo-
menta which make possible a ‘communication’ between
graphs with seemingly different propagator structures. It
is this communication that eventually leads to the gauge
cancellations between different diagrams that restore the
good high-energy behaviour. Obviously the cancellation
of gauge-dependent terms between different graphs will
be even more pronounced in a general Rξ gauge, due to
the presence of the extra momenta in the longitudinal part
of a gauge boson’s propagator in this case.

Any attempt to approximate Higgs production using
only resonant production via WW fusion (or indeed any
other multi-gauge-boson production process) cannot
therefore succeed unless the above gauge cancellations are
correctly taken into account. The recently developed tree
level pinch technique [4], [5], provides exactly the right
calculational framework for addressing this problem. It al-
lows a rigorous definition of a gauge invariant sub-
amplitude which can be used to approximate a full scatter-
ing amplitude. For example in [4], the authors considered
the process e+e− → W+W− and were able to establish
good high-energy behaviour for each individual square or
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interference term of the three contributing Feynman dia-
grams.

In this paper we will apply similar methods in or-
der to isolate the W -fusion part of the qq → qqZ pro-
cess in the form of a squared subamplitude that is both
gauge independent and respects unitarity. This subampli-
tude squared can then be used to provide a well-defined
approximation to Higgs production based only on W -
fusion that, as we shall see, works particularly well in the
region of the resonance and above. It should therefore pro-
vide a useful analysis tool for simulating Higgs production
at, for example, the LHC pp collider, especially in a Monte
Carlo context where the compactness of our expressions
for the subamplitude avoids a time consuming calculation
of the full amplitude.

The paper is in essentially two parts. In the follow-
ing section we discuss in some detail how to implement
the pinch technique in the context of the W -fusion pro-
cess. Having arrived at the final expressions for the ap-
proximate scattering amplitude squared, we then perform
numerical studies to compare our results for various dis-
tributions with those obtained from the full calculation.
Our conclusions are presented in a final section.

2 A unitarity respecting amplitude
for off-shell W fusion

In this section we will consider in detail the process

ū(q1)u(q2) → d̄(q3)d(q4)Z(k1)Z(k2) (2.1)

which obviously can proceed via W - fusion. We will show
how it is possible to isolate the W -fusion part of this pro-
cess in a well defined way, and arrive at a squared ampli-
tude that is gauge independent and respects unitarity.

The complete set of Feynman diagrams for this pro-
cess exhibits a plethora of different propagators, and we
can use these to classify the various types of diagrams.
First, we separate all graphs into two categories accord-
ing to whether the initial quarks annihilate (S graphs)
or not (T graphs). The T graphs are those that contain t-
channel W propagators. There are in total 34 T graphs (in
the Feynman gauge) and we may further separate them
according to their fermion propagator structure or, equiv-
alently, according to the particles that emit the final-state
Z bosons. Thus if we require both Zs to be emitted from
gauge bosons, we obtain the usual six W -fusion graphs.
These will be denoted collectively by TWW

TWW = TW + TcW + T4G + Tφ + Tcφ + TH (2.2)

and are depicted in Fig. 1. Their characteristic feature is
that they do not contain any fermion propagators. In fact
their structure is described by

TWW =
Vα

W1

Uβ

W2
Tαβµν

WW εµ
1 εν

2 , (2.3)

where W1 and W2 are the inverse propagators of the two
off-shell W bosons given in (1.2). The external fermions

only enter through the two fermion currents

Vα =
g√
2
vu(q1)γαPLvd(q3) (2.4)

Uβ =
g√
2
ud(q4)γβPLuu(q2) . (2.5)

In the Feynman gauge the individual graphs are given
explicitly by

Tαβµν
W =

c2
W

D1
Γαρµ(p1, k1 − p1,−k1)

×Γ βρν(p2, k2 − p2,−k2) (2.6)

Tαβµν
cW =

c2
W

D2
Γαρν(p1, k2 − p1,−k2)

×Γ βρµ(p2, p2, k1 − p2,−k1) (2.7)

Tαβµν
4G = c2

W

×Gαβµν(p1, p2, k1, k2) (2.8)

Tαβµν
φ =

M2
Zs4

W

D1
gαµgβν (2.9)

Tαβµν
cφ =

M2
Zs4

W

D2
gανgβµ (2.10)

Tαβµν
H =

M2
Z

DH
gαβgµν (2.11)

where an overall factor of (−ig2) has been omitted from
all graphs.

The kinematics of the process is described in Fig. 1,
i.e.

p1 = q1 − q3 , p2 = q2 − q4 , p1 +p2 = k1 +k2 = q .
(2.12)

The inverse bosonic propagators appearing in these graphs
are

D1 = (k1 − p1)2 − M2
W = (k2 − p2)2 − M2

W , (2.13)
D2 = (k1 − p2)2 − M2

W = (k2 − p1)2 − M2
W , (2.14)

DH = q2 − M2
H . (2.15)

Note that an imaginary part must be included in the Higgs
propagator DH in order to regulate it when q2 = M2

H .
We will comment on its precise form later. The t-channel
propagators of the W s will always be spacelike (< 0). In
fact for the two W s emitted from the external fermions
we have

p2
1 = −

√
sE3

2
(1 − cos θ13) , p2

2 = −
√

sE4

2
(1 − cos θ24) ,

(2.16)
where the energies and scattering angles refer to the
centre-of-mass frame. Thus the W s will always be off-shell
by at least an amount equal to their mass, |W1|, |W2| ≥
M2

W , with the minimum being attained for forward scat-
tering, θ13 = 0 = θ24 (⇒ p2

1 = 0 = p2
2).

The forms of the trilinear ZµW−
α W+

β and quadrilinear
ZµZνW−

α W+
β gauge boson vertices that appear in these
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graphs are given, respectively, by

Γµαβ(q, p1, p2) = (q − p1)βgµα + (p1 − p2)µgαβ

+(p2 − q)αgβµ , (2.17)
Gαβµν(p1, p2, k1, k2) = 2gαβgµν − gαµgβν

−gανgβµ , (2.18)

where all momenta are considered incoming.
The case where one Z is emitted from a fermion line

while the other is emitted from a W is described by the
eight graphs denoted by TWf :

TWf = T1d+T1u+T2d+T2u+T1d̄+T1ū+T2d̄+T2ū , (2.19)

and depicted in Fig. 2. These graphs contain one fermion
propagator and one trilinear gauge boson vertex. Only one
of the currents Vα or Uβ appears. A typical TWf graph has
the following structure:

T1d =
Vα

W1

1
D1

Γαρµ(p1, k1 − p1,−k1)`d

× g√
2
udγνPL

1
q/2 − (k/1 − p/1)

γρuuεµ
1 εν

2 . (2.20)

The couplings of the fermions to the Z are defined here as

ig

cw
γµ (`fPL + rfPR) (2.21)

where

`f = I3
W,f − s2

wQf , rf = −s2
wQf . (2.22)

In the above expressions I3
W,f is the third component of

the weak isospin, Qf the charge of fermion f , and PR,L =
(1 ± γ5)/2.

The remainder of the T graphs, where both Zs emanate
from fermions, are denoted Tff and are exhibited in Fig. 3:

Tff = TW1 + TW2 + TD1 + TD2 . (2.23)

Each one of these graphs contains two fermion propaga-
tors. In (2.23) we have grouped them according to the
W propagator they contain. In this class of graphs either
one current appears and two fermionic propagators are
present in the other fermion line (TW1 and TW2 graphs, 6
graphs each), or no current appears and each fermion line
contains one fermion propagator (TD1 and TD2 graphs, 4
graphs each). Altogether there are 20 graphs in this class.

Finally, the S graphs are divided into classes accord-
ing to the neutral gauge boson (γ, Z, or g) into which the
initial quarks anihilate. There are 63 graphs in this cate-
gory, denoted as SZ (20), Sγ (20), Sg (20), and SZZ (3)
according to the gauge boson propagators that they con-
tain. In the SV graphs the Zs are emitted from fermions
and thus all these graphs contain two fermion propaga-
tors. The SZZ graphs are the Higgs-strahlung graphs. Like
the W fusion graphs they contain no fermion propaga-
tors. One representative of each of these classes is shown
in Fig. 4.
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u

u

Z

Z

d

d
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Z

u

u

Z

d

Z

d

H

SZZ

Fig. 4. The S graphs. There are 20 Sg, Sγ and SZ graphs
respectively. One of the three Higgs-strahlung graphs is also
shown

These seemingly different classes of graphs contain in
fact a large number of identical terms. These common
terms are responsible for the large unitarity cancellations
that take place in the sum of all graphs. On the other
hand, unitarity violation occurs within individual subsets
of graphs, e.g. TWW , as a result of incomplete cancella-
tions among such terms. The common terms among the
different classes of graphs arise when momentum factors
in the graphs’ numerators trigger one of the following tree-
level Ward identities:

kµγµ ≡ k/ = (k/ + q/i) − q/i

= S−1(k + qi) − S−1(qi), (2.24)
qµΓµαβ(q, p1, p2) = [p2

2gαβ − p2αp2β ]

−[p2
1gαβ − p1αp1β ]

= U−1
αβ (p2)W − U−1

αβ (p1)W , (2.25)

kµ
1 Gαβ;µν(p1, p2; k1, k2) = Γαβν(p1, p2 + k1, k2)

−Γαβν(p1 + k1, p2, k2), (2.26)

kµ
1 kν

2gµν =
1
2
(q2 − k2

1 − k2
2)

=
1
2
DH +

1
2
(M2

H − 2M2
Z), (2.27)

where (2.27) is the Ward identity of the HZZ vertex
with the two Z bosons on shell, while U−1

αβ (p)W = (p2 −
M2

W )gαβ − pαpβ is the inverse propagator of the W in the
unitary gauge. The inverse propagators generated in this
way cancel one of the propagators of the graph, result-
ing in a structure that mimics the structure of a different
class. For example, the two classes of graphs WW and Wf
become identical in form when one of the Wi propagators
is removed in the TWW graphs while at the same time
the fermion propagator is removed in the TWf graphs.
The remaining terms in the Ward identities mostly can-
cel when the particles involved are on shell. As we have
already noted, the momentum factors in the numerators
that trigger the above Ward identities are furnished by the
trilinear gauge boson vertices and the longitudinal polar-
ization vectors of the external Z bosons. In fact current
conservation, good high energy behaviour, the equivalence
theorem and the cancellation of gauge parameters all have
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their origins in these and other similar Ward identities
satisfied by the tree-level vertices of the Standard Model.
Indeed a set of tree-level graphs is characterised as gauge
invariant when none of its parts can resemble the structure
of a different set of graphs by use of a Ward identity.

With this criterion in mind it should now be clear that
the S graphs are not involved in any unitarity cancella-
tions with the T graphs. First of all the couplings involved
are different. For example the Sg graphs can never mix
with any other class of graphs since they are the only ones
that involve the strong coupling constant. Thus they are
gauge invariant and well behaved by themselves. Second,
there are not enough factors in the numerators of these
two classes that are capable of cancelling the necessary
propagators to make a common term. One W propagator
will always survive in the T graphs while no such prop-
agator is present in the S graphs. Thus in the search for
a well behaved W -fusion squared amplitude the S graphs
can be ignored, and we need only concentrate on the T
graphs.

With these considerations it should also be evident
that off-shell Z-fusion or Higgs-strahlung cannot give rise
to unitarity violation [2]. The Higgs-strahlung graphs SZZ

cannot communicate in any way with the rest of the graphs.
Even if their Higgs propagator is cancelled they will always
contain two Z boson propagators.

Equivalently the good high energy behaviour of the T
graphs alone can also be verified by considering a different
W -fusion process where the initial fermions cannot anni-
hilate, like e+µ− → νν̄µZZ. This process still retains the
T graphs but does not involve any S graphs.

The Ward identities of (2.24-2.27) guarantee both the
gauge parameter independence of the amplitude as well
as independence with respect to gauge transformations of
the external gauge bosons. For physical amplitudes with
external gauge bosons, gauge invariance is encoded in the
following relationships:

γ; g : kµTµ(γ; g) = 0 (2.28)

W± : kµTµ(W±) = ±MW T (φ) (2.29)
Z : kµTµ(Z) = −iMZT (χ) (2.30)

In these equations Tµ(γ; g), Tµ(W±), Tµ(Z) are phys-
ical amplitudes with at least one external gauge boson
γ, g, W±, Z carrying momentum kµ. The amplitudes
T (φ) and T (χ) on the right-hand side are the correspond-
ing set of graphs where the gauge boson is replaced by
its would-be Goldstone boson. The above (2.28-2.30) can
be considered as Ward identities for whole set of graphs
and they are the direct consequence of the Ward identi-
ties of (2.24-2.27)A set of graphs that satisfies these Ward
identities is said to be gauge invariant. It would be both
independent of any gauge parameters and of the choice of
polarization vector for the external gauge boson. For the
photon, (2.28) is usually referred to as current conserva-
tion in QED, while from (2.29) and (2.30) the Equivalence
Theorem follows directly [8].

In our case, since the fermions are massless and there
is no χWW vertex, the TWf and Tff graphs will give no

contribution to the right-hand side of (2.30). Thus

kµ
1 Tµ(Z) = −iMZTWW (χ) . (2.31)

Since unitarity in off-shell W -fusion is violated by terms
which are proportional to the off-shellness of the W bosons
[2], the common terms between the TWW and the TWf +
Tff graphs will always be proportional to W1 and W2.
In the calculation of the squared amplitude such common
terms will emerge at three different levels. The first level is
that of the amplitude, stripped of the polarization vectors
of the Zs

Tµν = (TWW + TWf + Tff )µν . (2.32)

At this level, the presence of the trilinear vertices already
generates off-shell unitarity violating terms in the TWW

and TWf that cancel between them. At this stage all gauge
parameters cancel also.

The second cancellation occurs when in the full ampli-
tude,

T = Tµνεµ
1 εν

2 , (2.33)

the polarization vectors of the Z bosons become longitu-
dinal and thus their leading part becomes proportional to
the momenta of the Zs, kµ

1 and kν
2 . Now the action of kµ

1
and/or kν

2 on the amplitude will produce extra off-shell
terms. Such terms will again cancel among the TWW and
TWf + Tff graphs.

Finally, in the squared amplitude additional off-shell
terms will appear between the squared W -fusion ampli-
tude |TWW |2 and the interference term TWW (T ∗

Wf +T ∗
ff ).

Most of these terms again cancel. Those that do not,
emerge from the interferences of the Higgs graph TH . Be-
cause of their structure (they contain no fermion prop-
agators), these terms will be allocated to the W -fusion
amplitude |TWW |2.

Accounting for these cancellations at every level is sim-
ply an exercise in identifing structures. The common terms
can actually be identified graphically, as in Fig. 5 or Fig. 6.
In order to keep track of them the properties and the Ward
identities of the gauge boson self-interaction vertices are
exploited. Thus the trilinear gauge vertex of (2.17) is de-
composed in the asymmetric form, first used by t’ Hooft
[6],

Γµαβ(q, p1, p2) = ΓF
µαβ(q; p1, p2)+ΓP

µαβ(q; p1, p2) , (2.34)

where

ΓF
µαβ(q; p1, p2) = (p1 − p2)µgαβ − 2qαgβµ

+2qβgµα (2.35)

ΓP
µαβ(q; p1, p2) = −p1αgβµ + p2βgµα . (2.36)

The pinch part is proportional to the momenta of two of
the legs of the vertex carrying their corresponding Lorentz
index. This part therefore vanishes identically when the
two legs are on shell. The ΓF part of the vertex satisfies
the Feynman gauge part of the Ward identity of (2.25),

qµΓF
µαβ(q; p1, p2) = (p2

2−p2
1)gαβ = (W2−W1)gαβ , (2.37)
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Fig. 6. Pinch terms induced by the mo-
mentum of a longitudinal Z boson. The
sum of (a), (b), (c) and the relevant
term for the Tff graphs is a pictorial
representation of the Ward Identity of
(2.30) when the trilinear vertices in the
graphs are the full ones. In the sum, all
pinch terms on the r.h.s. cancel and the
remainder equals the graphs T (χ), with
the external Z replaced by its would-be
Goldstone boson χ. Terms represented
by the ellipsis on the r.h.s. of (b) con-
tribute to the remainder Rν

1 of (2.77). In
(d) we show how pinching is induced in
the Higgs graph according to the Ward
identity of (2.27). The pinch term on
the r.h.s. contributes to the gαβ term
of F1 in (2.83)
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while the pinch part ΓP will give rise to the longitudinal
terms of (2.25). The four-gauge-boson vertex of (2.18) can
also be split into two parts:

Gαβ;µν(p1, p2;−k1,−k2) = GF
αβ;µν(p1, p2;−k1,−k2)

+GP
αβ;µν(p1, p2;−k1,−k2) , (2.38)

GF
αβ;µν(p1, p2;−k1,−k2) = 2gαβgµν , (2.39)

GP
αβ;µν(p1, p2;−k1,−k2) = −gαµgβν − gανgβµ . (2.40)

With the above decomposition, the Ward identity of (2.26)
is also satisfied individually by its Feynman (GF ) and
pinch (GP ) parts.

We next proceed to explicitly exhibit and implement
the aforementioned cancellations between the W -fusion
and the rest of the T graphs. Most of the remaining part
of this section will be quite technical, involving extended
use of the relevant Ward identities. Readers who are only
interested in the results of the calculation may wish to go
directly to (2.92) and the discussion that follows it.

The 1st cancellation

In order to identify the common off-shell terms at this
level one must first decompose the trilinear and quadri-
linear gauge vertices into their Feynman and pinch parts.
The two sets of graphs TWW and TWf which contain such
vertices will then separate into Feynman and pinch parts
respectively:

Tµν
WW = TFµν

WW + TPµν
WW ,

Tµν
Wf = TFµν

Wf + TPµν
Wf . (2.41)

The pinch parts are proportional to the off-shellness of
the W bosons. We will explicitly show that these parts
exactly cancel.

Since the decomposition of a trilinear vertex in (2.34)
is asymmetric, at this point one has to make a choice for
the first momentum argument of the ΓF vertices. Different
choices should make no difference to the final result when
the procedure is carried through consistently. Nevertheless
at intermediate points a particular choice may facilitate
the calculations. It turns out that choosing as the special
momentum for the ΓF vertices the momentum of the cor-
responding off-shell W , p1α or p2β , minimizes the number
of interference terms that must be considered, thus ex-
pediting the calculations.2 Thus the Feynman and pinch
parts of the vertices are:

ΓF
αρµ(p1; k1 − p1,−k1) = 2(k1αgρµ + p1µgαρ − p1ρgµα) ;

ΓP
αρµ(p1; k1 − p1,−k1) = (p1 − k1)ρgµα (2.42)

ΓF
βρν(p2; k2 − p2,−k2) = 2(k2βgρν + p2νgβρ − p2ρgνβ) ;

ΓP
βρν(p2; k2 − p2,−k2) = (p2 − k2)ρgνβ (2.43)

2 Actually this choice is identical to the one made in the
one-loop pinch technique, since these would be the momenta
outside the loop in WW → ZZ.

ΓF
αρν(p1; k2 − p1,−k2) = 2(k2αgρν + p1νgαρ − p1ρgνα) ;

ΓP
αρν(p1; k2 − p1,−k2) = (p1 − k2)ρgνα (2.44)

ΓF
βρµ(p2; k1 − p2,−k1) = 2(k1βgρµ + p2µgβρ − p2ρgµβ) ;

ΓP
βρµ(p2; k1 − p2,−k1) = (p2 − k1)ρgµβ (2.45)

In the above expressions we have dropped all terms that
will not contribute to the matrix element. These are the
terms proportional to p1α and p2β , which for massless
fermions vanish when contracted with the external fer-
mionic currents, i.e. p1αV α = 0 and p2βUβ = 0. Further-
more at this level we can also drop terms proportional to
k1µ and k2ν that vanish when contracted with the polar-
ization vectors of the Zs: k1µεµ(k1) = 0 = k2νεν(k2).

It is straightforward to calculate the pinch part of the
TWf graphs. Since they contain only one trilinear ver-
tex they split immediately into two parts. One readily
observes that the pinch part, ΓP , of the vertex simply
cancels the fermion propagator in each of these graphs by
virtue of the Ward identity of (2.24). We illustrate this
explicitly for one of the graphs. The expression for T1d

of Fig. 2 has already been written out explicitly in (2.20).
Using (2.42) for ΓP

βρν , the pinch part of this graph is given
by

TP
1d =

V α

W1

gαµ

D1

g√
2
`dudγν

1
q/2 − k/1 + p/1

×(p/1 − k/1)PLuu(q2)ε
µ
1 εν

2 . (2.46)

Then writing

p/1 − k/1 = (q/2 − k/1 + p/1) − q/2 , (2.47)

the first term will cancel the fermion propagator while the
second one vanishes since q/2uu(q2) = 0. So the pinch part
of this graph is

TP
1d =

V α

W1

Uβ

W2
(`d)

W2

D1
gαµgβνεµ

1 εν
2 . (2.48)

The corresponding expression TP
1u, of graph T1u of

Fig. 2 is simply obtained by (i) changing `d, the fermion
coupling of the Z, to `u since the Z boson is now emitted
from the up fermion, and (ii) changing the overall sign,
since now the fermion propagator involves q/3 − (p/1 − k/1).
Thus, using the following relation for the fermion cou-
plings,

`u − `d = c2
w , (2.49)

the two graphs combined give

TP
1 ≡ TP

1u + TP
1d =

Vα

W1

Uβ

W2
(−c2

w)
W2

D1
gαµgβν . (2.50)

Evidently this expression resembles the structure of the
W -fusion graphs, TWW . It contains no fermion propaga-
tors and has the correct coupling. We have divided and
multiplied by the W boson inverse propagator W2 in or-
der to bring the expression into the form of (2.3). This
step is not strictly necessary, but our convention will be
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always to extract a factor VαUβ/(W1W2) from all such
terms.

The pinch parts of the rest of the TWf graphs are ex-
tracted in a similar way. The graphs always combine in
pairs to produce the correct coupling c2

w. Altogether we
obtain for the pinch terms of the TWf graphs the follow-
ing expression:

TP
Wf =

Vα

W1

Uβ

W2
(−c2

w)(W1 + W2){gαµgβν

D1
+

gανgβµ

D2
}εµ

1 εν
2 .

(2.51)

Next we turn to the W -fusion graphs. In order to iden-
tify similar pinch terms to those of the TWf graphs we will
use the following identity for the product of two trilinear
vertices [7]:

ΓαρµΓβρν = ΓF
αρµΓF

βρν +ΓP
αρµΓβρν +ΓαρµΓP

βρν −ΓP
αρµΓP

βρν .
(2.52)

This decomposition will enable us to make use of the Ward
identity of the full vertex given in (2.25).

Let us first consider the graph TW given in (2.6). Using
(2.52), the product of its trilinear vertices can be expressed
as

Γαρµ(p1, k1 − p1,−k1)Γβρν(p2, k2 − p2,−k2)

= ΓF
αρµ(p1; k1 − p1,−k1)ΓF

βρν(p2; k2 − p2,−k2)

+gβν(p2 − k2)ρΓ
αρµ(p1, k1 − p1,−k1)

+gαµ(p1 − k1)ρΓ
βρν(p2, k2 − p2,−k2)

−gαµgβν(p2 − k2) · (p1 − k1) . (2.53)

Since p1 − k1 = k2 − p2, the Ward identity of (2.25) is im-
mediately triggered by the second and third term of the
above equation. This will produce off-shell terms propor-
tional to p2

i = Wi + M2
W . The fourth term can be written

in terms of the inverse propagator D1 when M2
W is added

and subsequently subtracted. Finally, using the on-shell
condition for the Zs, k2

1 = k2
2 = M2

Z , the expression (2.6)
for the diagram TW is transformed into

Tαβµν
W =

c2
w

D1

[
ΓF

αρµΓF
βρν + [M2

Z(c2
w − 2s2

w)

+D1 + (W1 + W2)]gαµgβν ] . (2.54)

The momenta arguments of the vertices will no longer
be exhibited, since the way their momenta are assigned
should be obvious from the Lorentz indices of the vertices.
The first and third indices determine the first and third
momentum arguments of the vertex respectively, accord-
ing to (µ, ν, α, β) → (−k1,−k2, p1, p2), while the second
argument is fixed by momentum conservation. In an iden-
tical way the crossed graph TcW is rewritten as

Tαβµν
cW =

c2
w

D2

[
ΓF

αρνΓF
βρµ + [M2

Z(c2
w − 2s2

w)

+D2 + (W1 + W2)]gανgβµ] (2.55)

Having obtained these new forms for the diagrams TW

and TcW we make the following observations. The terms

proportional to M2
Z(c2

w − 2s2
w), directly combine with the

corresponding would-be Goldstone graphs of (2.9) and
(2.10) to produce an overall coupling equal to s4

w−2s2
wc2

w+
c4
w = (c2

w − s2
w)2. The terms proportional to D1 or D2 will

immediately cancel the relevant propagator of the graph,
i.e. either 1/D1 or 1/D2, and will thus combine with the
quadrilinear vertex graph T4G. In doing so they cancel the
GP pinch part of the quadrilinear vertex. The last terms
proportional to the off-shellness of the W bosons are the
pinch terms. These operations are represented pictorially
for graph TW in Fig. 5(a), where the ellipsis represent the
M2

Z(c2
w − 2s2

w) term of (2.54)
Thus the Feynman and pinch parts of the TWW graphs

are given by the following expressions:

TFµν
WW =

Vα

W1

Uβ

W2

{ c2
w

D1
ΓF

αρµΓF
βρν +

c2
w

D2
ΓF

αρνΓF
βρµ

+2c2
wgαβgµν + M2

Z(c2
w − s2

w)2[
gαµgβν

D1

+
gανgβµ

D2
] + M2

Z

gαβgµν

DH

}
, (2.56)

and

TPµν
WW =

Vα

W1

Uβ

W2
(c2

w)(W1 + W2){gαµgβν

D1
+

gανgβµ

D2
} .

(2.57)
We note that the off-shell pinch terms have only been
generated from the graphs that contain trilinear gauge
vertices, namely TW and TcW . Only these two graphs can
communicate with the rest of the graphs, in this case TWf ,
due to the rich momentum structure of their numerator.

Finally we observe that the pinch part of the W -fusion
graphs, TPµν

WW in the above equation, exactly cancels the
pinch term of the TWf graphs TP

Wf of (2.51). Indeed

TP
WW + TP

Wf = 0 . (2.58)

We have also verified the above results by performing
the calculations in a general Rξ gauge. For this 2 → 4
process the cancellation of the gauge parameters due to
current conservation is not automatic as in the case of
a 2 → 2 process. Common pinch terms among different
classes of graphs are now even more prolific, due to the
presence of the extra momenta in the longitudinal part of
the gauge bosons’ propagators. In addition, most of them
will also be gauge parameter dependent. When all such
terms are identified and cancelled the surviving expres-
sions coincide with those obtained in the Feynman gauge.
Thus the formula of (2.56) for TF

WW and the corresponding
ones for TF

Wf and Tff are truly gauge parameter indepen-
dent expressions.

It would be interesting to find or invent a gauge where
these expressions could be obtained automatically by the
Feynman rules of the particular gauge. In such a gauge this
first level of cancellations would be avoided. Furthermore
such a gauge might prove useful in other multi-gauge-
boson processes. However we are not aware of any such
special gauge. Although the ΓF vertices of (2.42–2.45)
look similar to the trilinear vertices of the Gervais-Neveu
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gauge [9], they are actually not the same, and thus the
Gervais-Neveu gauge expression of the W -fusion graphs
does not coincide with TF

WW .
Although the expression for the W fusion graphs (2.56),

obtained after this first step, is gauge parameter indepen-
dent, it remains however gauge non-invariant in the sense
that it still does not satisfy the Ward identity of (2.30).
Because of this fact, the W fusion part can still not be
separated from the rest of the graphs. To do this, the can-
cellations inherent in (2.30) must be allowed to take place
first. This is done in the next step. We also note that the
following steps would not be necessary had we considered
photons instead of Zs in the final state, i.e. WW → γγ.

The 2nd cancellation

After this first cancellation has taken place the result-
ing gauge parameter independent amplitude T for our pro-
cess can be written as

T = (TF
WW + TP

WW + TF
Wf + TP

Wf + Tff )µνεµ
1 εν

2

= (TF
WW + TF

Wf + Tff )µνεµ
1 εν

2 . (2.59)

The further cancellations due to the longitudinal Z
bosons become more transparent in the squared unpolar-
ized amplitude where the sum over the polarizations of
the Zs will give a factor

∑
λ1

εµ
Z(k1, λ1)ε

∗µ′
Z (k1, λ1) = −gµµ′ +

kµ
1 kµ′

1

M2
Z

, (2.60)

and similarly for εν
Z(k2, λ2). The extra momentum factors,

kµ
1 , kν

2 etc. introduced in this way will result in bad high
energy behaviour, since their growth with energy cannot
be compensated by the constant factors of MZ in the de-
nominator. Thus cancellations at this stage will be instru-
mental in restoring unitarity.

The unpolarized squared amplitude is given by

|T |2 =
1
4
TFµν

(−gµµ′ + k1µk1µ′/M2
Z

)
× (−gνν′ + k2νk2ν′/M2

Z

)
TF∗

µ′ν′ . (2.61)

Expanding the product of polarization tensors gives four
terms:

4 |T |2 = TFµνTF∗
µν − k1µ

MZ
TFµν k1µ′

MZ
TF∗

µ′ν

− k2ν

MZ
TFµν k2ν′

MZ
TF∗

µν′

+
k2νk1µ

M2
Z

TFµν k2ν′k1µ′

M2
Z

TF∗
µ′ν′ . (2.62)

We next determine the effect of the factors of longitudinal
momenta within each of the following terms:

k1µTFµν , k2νTFµν , and k2νk1µTFµν , (2.63)

before actually squaring them. We will then explicitly
show the generation and cancellation of the common off-
shell terms within each of the above terms.

The action of kµ
1 on the TWW amplitudes will gener-

ate off-shell terms when contracted with the ΓF vertices.
Since kµ

1 is not the first, special, argument of ΓF the Feyn-
man Ward identity of (2.37) is modified to:

kµ
1 ΓF

αρµ =
(−D1 + M2

Z + W1
)
gαρ+2k1α(k1−p1)ρ (2.64)

for the graph TW , and to

kµ
1 ΓF

βρµ =
(−D2 + M2

Z + W2
)
gβρ+2k1β(k1−p2)ρ (2.65)

for the crossed graph TcW . The remaining terms (k1−p1)ρ

and (k1−p2)ρ of the above equations will create additional
off-shell terms when they act in turn on the remaining ΓF

vertex of each graph. Now the modified Ward identities
read:

(k1 − p1)ρΓF
βρν = −[D1 + W2 + M2

Z(c2
w − s2

w)]gβν

−2k2βk2ν ,

(k1 − p2)ρΓF
αρν = −[D2 + W1 + M2

Z(c2
w − s2

w)]gαν

−2k2αk2ν , (2.66)

where the following elementary identities have been used
for the dot products:

2k1 · p1 = −D1 + M2
Z + W1 ,

2k1 · p2 = −D2 + M2
Z + W2 , (2.67)

2k2 · p1 = −D2 + M2
Z + W1 ,

2k2 · p2 = −D1 + M2
Z + W2 . (2.68)

In the end the contraction of kµ
1 with the TF

WW graphs
assumes the following form:

kµ
1 TFµν

WW = M2
ZAν

1 −2c2
wF1k

ν
2 +M2

Z

F2

DH
kν
1 +c2

wOν
1 . (2.69)

In the term Aν
1 the index ν is never carried by either k2

or k1. The dependence on kν
2 or kν

1 has been explicitly
exhibited, the latter emerging from the Higgs graph. The
explicit expressions read:

Aν
1 =

V α

W1

Uβ

W2

[
c2
w

D1
ΓF

βαν +
c2
w

D2
ΓF

αβν − (2c2
w − 1)

×
(

kα
1 gβν

D1
+

kβ
1 gαν

D2

)]
(2.70)

F1 =
V α

W1

Uβ

W2
tαβ (2.71)

F2 =
V α

W1

Uβ

W2
gαβ (2.72)

with

tαβ = gαβ +
2kα

1 kβ
2

D1
+

2kβ
1 kα

2

D2
. (2.73)

The off-shell terms O1 in (2.69) are

Oν
1 =

V α

W1

Uβ

W2

[
W1

D1
ΓF

βαν +
W2

D2
ΓF

αβν

−2
W2

D1
kα
1 gβν − 2

W1

D2
kβ
1 gαν

]
. (2.74)
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The action of kµ
1 on the TWf and Tff graphs can be easily

determined. Since mostly the Z bosons are emitted from
fermion lines, the kµ

1 will directly pinch the fermion prop-
agators adjacent to the Z boson leg by virtue of the Ward
identity of (2.24) with k → k1.

When kµ
1 is emitted from a W then the modified Ward

identities of (2.64) and (2.65) must be used. The terms
(k1 − p1)ρ and (k1 − p2)ρ emerging from these identities
will now pinch the fermion propagator attached to the
internal W boson the same way as in (2.46). From the
remaining terms of equations (2.64) and (2.65) the ones
proportional to M2

Z cannot obviously pinch while the rest
pinch one of the W propagators of the graphs. These latter
pinch terms attain therefore a structure similar to that of
the Tff graphs and indeed will cancel exactly the entire
contribution of the Tff graphs.

After carrying out the above steps we finally obtain

kµ
1 TFµν

Wf = −c2
wOν

1 + M2
ZRν

1 − kµ
1 Tµν

ff . (2.75)

One immediately observes that the off-shell pinch terms
that emerge from the TWf graphs are exactly opposite
to the ones generated by the W -fusion graphs of (2.69)
and exactly cancel. This is a manifestation of the Ward
identity of (2.30). The remainder Rν

1 retains the structure
of the TWf graphs and is given explictly by

Rν
1 =

Vα

W1

1
D1

g√
2
u(q4)

{
`dγ

ν 1
q/4 + k/2

γαPL

+`uγαPL
1

q/2 − k/2
γν

}
u(q2)

+
Uβ

W2

1
D2

g√
2
v(q1)

{
`dγ

βPL
1

q/3 + k/2
γν

+`uγν 1
q/1 − k/2

γβPL

}
v(q2) . (2.76)

Thus the action of kµ
1 on the complete amplitude will fi-

nally be of the form:

k1µTµν = M2
ZAν

1−2c2
wF1k

ν
2 +M2

Z

F2

DH
kν
1 +M2

ZRν
1 . (2.77)

As already mentioned, this is nothing else but the Ward
identity of (2.30) slightly modified by the remainder of the
TWf graphs. The fact that such a term has survived in the
left-hand side is simply because after the first cancellation
the amplitudes have been written in terms of modified
vertices ΓF . Since we also do not contract with εν(k2),
the terms proportional to kν

2 have also survived.

The effect of the longitudinal factor kν
2 in the third

term of (2.62) is obtained in an identical manner. As ex-
pected, the off-shell terms common between the TWW and
TWf graphs again cancel. In the end one obtains

k2νTµν = M2
ZAµ

2−2c2
wF1k

µ
1 +M2

Z

F2

DH
kµ
2 +M2

ZRµ
2 , (2.78)

where Aµ
2 and Rµ

2 can be obtained from (2.70) and (2.76)
respectively by the replacements k1 ↔ k2 and µ ↔ ν.

Finally we examine the fourth term of (2.62),
k2νk1µTµν . Here the momenta of both Zs act on the am-
plitude. (The order in which the contractions are per-
formed does not matter.) Acting first with kµ

1 again pro-
duces the result of (2.77). When next kν

2 is contracted with
this equation it generates off-shell terms from both classes
of graphs. On the TWW graphs it gives

kν
2kµ

1 TFαβµν
WW = M2

Z

[
(
1
2

− 4c2
w)F1 + AF2 + c2

wO12F2

]
(2.79)

with

A =
[
M2

W

D1
+

M2
W

D2
+

M2
H − 2M2

Z

2DH

]
(2.80)

and

O12 =
[
W2

D1
+

W1

D2

]
. (2.81)

Here we have also used the Ward identity of the Higgs
vertex, (2.27), to extract a piece from the Higgs graph
and combine it with the gauge boson graphs in F1.

The result for the remainder of the TWf graphs Rν
1 can

be readily obtained by removing the fermionic propagators
in (2.76) with k/2, by virtue of the Ward identity of (2.24).
This gives

kν
2Rν

1 = −c2
wO12F2 . (2.82)

Finally collecting together (2.79) and (2.82) we obtain

kν
2kµ

1 Tµν = M2
Z

[
(
1
2

− 4c2
w)F1 + F2A

]
. (2.83)

Notice again that all off-shell terms have cancelled.

The 3rd cancellation

After the first two cancellations have taken place, the
unpolarized squared amplitude of (2.62) attains the fol-
lowing form

4 |T |2 = TFµνTF∗
µν

− 1
M2

Z

[
M2

ZAν
1 − 2c2

wF1k
ν
2 + F2

M2
Z

DH
kν
1 + M2

ZRν
1

]

×
[
M2

ZAν
1 − 2c2

wF1k
ν
2 + F2

M2
Z

DH
kν
1 + M2

ZRν
1

]∗

− 1
M2

Z

[
M2

ZAµ
2 − 2c2

wF1k
µ
1 + F2

M2
Z

DH
kµ
2 + M2

ZRµ
2

]

×
[
M2

ZAµ
2 − 2c2

wF1k
µ
1 + F2

M2
Z

DH
kµ
2 + M2

ZRµ
2

]∗

+
∣∣∣∣(1

2
− 4c2

w)F1 + F2A

∣∣∣∣
2

. (2.84)

We can now see the advantages of our choice for the ΓF

vertices. When each term of (2.84) is squared, additional
off-shell terms will appear due to the interference of the
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TWW with the TWf +Tff graphs. This comes about from
the action of the terms kµ

1 , kν
2 , kν

1 and kµ
2 which have

been written explicitly in (2.84). No such terms will be
generated in the first term however. Squaring the second
term and exhibiting only terms that are of the W -fusion
type we obtain

− 1
M2

Z

[
M4

ZA1 · A∗
1 + 4c4

wM2
Z |F1|2 + M2

Z |F2/DH |2

−2c2
wF1k

ν
2

(
M2

ZAν
1 + M2

ZF2
M2

Z

DH
kν
1 + M2

ZRν
1

)∗
+ c.c.

+F2
M2

Z

DH
kν
1
(
M2

ZAν
1 + M2

ZRν
1
)∗

+ c.c. + ...

]
. (2.85)

On the second line of this expression (2.85), kν
2 will gen-

erate the same off-shell terms, O12, in a manner identical
to that of the previous subsection. These terms will cancel
in the same way they did in (2.79) and (2.82). Thus the
second line of (2.85) is equal to

−2c2
wF1M

2
Z

[
(
1
2

− 2c2
w)F ∗

1 + A∗F ∗
2

]
. (2.86)

Next we consider the third line of (2.85). This corresponds
to the interference of the contracted Higgs graph kµ

1 Tµν
H

with whatever has remained. The index ν is now carried
by the four momentum k1 instead of k2. This will not
affect the off-shell terms generated by the W fusion graphs
which will be again O12,

M2
Zkν

1Aν
1 = M2

Zh1 + M2
Zc2

wO12F2 , (2.87)

with

h1 =
V α

W1

Uβ

W2

[
− c2

wgαβ

(
D2

D1
+

D1

D2

)

+2c2
w(k1αk2β − k2αk1β)

(
1

D1
− 1

D2

)
(2.88)

+
(
[gαβM2

W + (1 − 4c2
w)k1αk1β

]( 1
D1

+
1

D2

)]
.

On the other hand, kν
1 acting on the remainder of the TWf

graphs Rν
1 now generates off-shell terms with the opposite

sign from the ones that would be generated from kν
2 . This

can easily be seen by looking at the expression for Rν
1

in (2.76). For k/1 to pinch the propagator 1/(q/4 + k/2) we
must use momentum conservation to write k/1 = −k/2 +
p/1 + p/2, thus introducing a minus sign and a remainder
proportional to p/1 + p/2 = k/1 + k/2 which can give zero
pinch. The final result will assume the form

kν
1Rν

1 = c2
wM2

ZO12F2 + · · · (2.89)

Thus we observe that the off-shell terms in this case do
not cancel between (2.87) and (2.89). The third line of
(2.85) is then equal to

F2
M2

Z

DH

[
M2

Zh∗
1 + 2 · c2

wM2
ZO12F

∗
2 + ....

]
. (2.90)

Since the off-shell terms that have survived in this inter-
ference of the Higgs graph do not contain any fermion
propagator, they must be included in the expression for
the squared W -fusion graphs and will therefore be a part
of our final result. (Actually their numerical significance
in the final result is negligible.) Similar results are also ob-
tained for the third term of (2.84) with the replacement
k1 ↔ k2.

Finally we collect together all terms that do not con-
tain any fermion propagators, that is, all those that resem-
ble the structure of a squared W -fusion graph, and omit
all others. In this manner we are able to define a part of
the squared matrix element specific to W -fusion:

|T |2 = |T |2ww + . . . . (2.91)

This squared amplitude will play the rôle of the signal for
W -fusion, while all remaining squares and interferences
will be identified as background. We stress again that this
separation between signal and background is now mean-
ingful since both parts are gauge invariant and well be-
haved at high energies. The signal squared amplitude for
W -fusion is explicitly given by

|T |2ww =
1
4
[
TFµνT ∗F

µν − M2
ZA1 · A∗

1

−M2
ZA2 · A∗

2 + (1/4 − 8c2
w)|F1|2

+|F2|2
(|A|2 − 2M4

Z/|DH |2 − 4M2
W O/|DH |2)

+<e(F1F
∗
2 A∗) − 2M2

Z<e (hF ∗
2 /D∗

H)
]

, (2.92)

where h = h1 + h2 and

O = (q2 − M2
H)(W1 + W2)(1/D1 + 1/D2) . (2.93)

We observe that the O term changes sign above and below
the resonance as an interference term usually does. Finally,
the unpolarized W -fusion cross section can be calculated
from

dσ̂ww =
g4

2s
|T |2ww

1
2
dΦ4 (2.94)

Since in arriving at the result of (2.92) we have ac-
counted for all possible exchange of terms and cancella-
tions between W -fusion and TWf + Tff graphs, this ex-
pression should now respect unitarity. By direct numerical
calculation (see below) we can see that this is indeed the
case; (2.94) exhibits good high energy behaviour. In fact
the cross section assumes a slow logarithmic growth with
increasing scattering energy, exactly as in the production
of an on-shell Higgs. Furthermore the Higgs resonance is
clearly exhibited in the differential distribution dσ/dMZZ

where MZZ = (k1 + k2)2 = q2.
Since the kinematics allow q2 to be equal to M2

H , in
order to carry out the numerical evaluation of (2.94) the
propagator of the Higgs boson must be regulated. We
adopt here the naive approach of adding an imaginary
part, equal to the total decay width of the Higgs, to all
the Higgs propagator denominators in (2.92). Specifically,
we make the substitution

DH = q2 − M2
H + iMHΓH . (2.95)
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The width ΓH is taken to be the sum of all partial, con-
stant decay widths of the (Standard Model) Higgs boson,
each one contributing as the relevant threshold is crossed.
With all fermions apart from the top quark taken as mass-
less, this is given by3

ΓH = θ(q2 − 4m2
t ) Γ

(tt)
H + θ(q2 − 4M2

W ) Γ
(WW )
H

+θ(q2 − 4M2
Z) Γ

(ZZ)
H . (2.96)

Including a constant width in this manner is to some ex-
tent an ad hoc assumption, but we have found that it
works very well numerically.

For a more consistent approach one has to rely on field
theory. In field theory, regulators for resonant amplitudes
are naturally provided through resummation of the self-
energy diagrams which form a geometric series. The min-
imal approach, sufficient to regulate the resonance, is to
include only the imaginary part of the one-loop self en-
ergy in the resummation. This corresponds to replacing
the inverse Higgs propagator by

DH = q2 − M2
H → q2 − M2

H + i=mΠHH(q2) (2.97)

thus giving rise to a running width

=mΠHH(q2) =
√

q2 ΓH(q2) . (2.98)

Since the bosonic parts of the Higgs self energy are gauge
dependent, the pinch technique must be used in both the
construction and resummation of the self energies [10].
This results in a gauge independent running width that
coincides, at q2 = M2

H , with the physical decay width of
(2.96), term by term, viz.

=mΠ
(tt)
HH(M2

H) = MHΓ
(tt)
H ,

=mΠ
(WW )
HH (M2

H) = MHΓ
(WW )
H ,

=mΠ
(ZZ)
HH (M2

H) = MHΓ
(ZZ)
H . (2.99)

The resummation of the Higgs self energy alone distorts
the Higgs related Ward identities such as (2.27). This is
because now the inverse Higgs propagator contains terms
of O(α). To compensate for this and still maintain the
Ward identities, we must also include in our amplitude the
one-loop imaginary parts of the relevant Higgs vertices.
The full form of the Ward identity of (2.27) is [10]

kµ
1 kν

2ΓHZZ
µν (q, −k1,−k2) + M2

ZΓHχχ(q, −k1,−k2) =
igMZ

2cw

[
DH(q2) − Dχ(k2

1) − Dχ(k2
2)
]

, (2.100)

where χ is the Goldstone boson related to the Z gauge
boson. A similar Ward identity holds for the ΓHWW

µν ver-
tex. These are Ward identities relating the tree level ver-
tices and propagators of the classical Lagrangian. They
hold true before including ghost and gauge fixing terms.

3 Recall that we are interested only in heavy Higgs bosons,
decaying to Z0Z0 final states, whose total width is dominated
by the tt̄, W+W − and Z0Z0 contributions.

They are still valid at one loop for the pinch technique
Green’s functions. At tree level, setting Dχ(k2) = k2 in
(2.100), since χ is massless before quantization, one re-
covers (2.27).

However these Ward identities are in fact irrelevant for
the unitarity cancellations that we have considered, i.e.
those between the W -fusion graphs and the graphs TWf

or Tff . They will become essential when one attempts
to separate out the Higgs graph alone from the rest of
the W -fusion graphs, and to require for it good high en-
ergy behaviour. In this case DH in (2.100) will cancel the
Higgs propagator and thus extract a piece from the Higgs
graph that combines with the gauge boson graphs, while
the rest of the terms in (2.100), namely ΓHχχ and Dχ,
will remain in the Higgs graph. This is a cancellation ‘in-
ternal’ to the W -fusion graphs. The extra vertex terms in
the Higgs graph will however modify its contribution by
O(α). It is conceivable that these terms, if not correctly
included, may lead again to violation of unitarity. How-
ever since they are O(α) this would come about only at
extremely high energies.

In our approach we have neglected all such terms of
O(α) in the numerator of the Higgs graph. However, in
order to obtain an estimate of the difference between our
naive treatment and the correct treatment on the reso-
nance, we have calculated the differential cross section us-
ing both a constant width and the pinch technique running
width for the Higgs. We have only found negligible numer-
ical differences of O(10−3 −10−4). These do not affect any
of the plots we present below. In general we believe that
the numerical significance of these terms is very small.

The squared amplitude of (2.92) is calculated with
FeynCalc and a Fortran output in terms of scalar prod-
ucts between momenta and fermion currents is obtained.
The phase space integration is done by Monte Carlo meth-
ods using VEGAS. We decompose the phase space according
to the structure of the Higgs graph, i.e. to the product of
a three body phase space times a two body decay of the
Higgs:

dΦ4(q1, q2; q3, q4, k1, k2) = (2π)3dΦ3(q1, q2; q3, q4, q) dq2

×dΦ2(q; k1, k2) . (2.101)

3 The process pp → ZZ + 2 jets + X

In this section we investigate the quantitative impact of
our results by studying the realistic case of heavy Higgs
production at the LHC. In particular, we focus on the ZZ
final state (the ‘gold-plated’ decay channel for a heavy
Standard Model Higgs, see for example [1]) We require, in
addition, two forward ‘tag’ jets [11], so that the leading-
order subprocess is qq → qqZZ. We will compare the cross
sections obtained using the full scattering electroweak am-
plitude for this process [3] with those obtained using the
pinch-approximated W -fusion amplitude, as defined and
calculated in the previous section.
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Fig. 7. Total subprocess cross section for W -fusion. The solid
line represents the six W -fusion graphs in the Feynman gauge.
The dotted line is the Higgs graph alone. The dash-dotted line
is the pinch technique result

The full cross section is obtained by summing over all
possible parton subprocesses folded with the appropriate
parton distributions:

σ(pp → ZZ + 2j + X) =
∑∫

dx1dx2fq1/p(x1, Q
2)

×fq2/p(x2, Q
2)σ̂(q1q2 → q′

1q
′
2ZZ) . (3.1)

For the parton distributions we use the default MRST set
[12], with scale choice Q = MH . As our primary aim is to
compare cross sections calculated using different scatter-
ing amplitudes, we fix the parton and parameter choices
throughout the study, and impose the same cuts on the
final-state particles. Because it is physically indistinguish-
able, we must include also the resonant Z-fusion contribu-
tion. The Z-fusion amplitude can be obtained straightfor-
wardly from the relevant 3 Feynman graphs, since they
form a gauge invariant subset. In some of the subpro-
cesses one of the two resonant mechanisms appears as
Higgs-strahlung S graphs, which are suppressed relative
to the fusion graphs by an additional factor of ŝ. In such
cases we retain only the energetically dominant, fusion
one. For example, in ūu → d̄dZZ the Higgs-strahlung SZZ

graphs are suppressed. When they are both relevant, as in
du → udZZ for example, we will neglect the interference
between them. This is because the momenta of the final
state quarks are crossed in the Z-fusion graphs relative to
the W -fusion quark momenta. Since each amplitude peaks
in the forward region there is a negligibly small region of
overlap in phase space. For the same reason, when calcu-
lating amplitudes with identical fermions in the final state
we will not consider the crossed diagrams, including only
the direct one without the symmetry factor 1/2.

We begin by showing, in Fig. 7, the total subprocess
cross section as a function of the subprocess centre-of-mass

energy
√

s, calculated three different ways. For purposes
of illustration we take MH = 500 GeV. The solid line
(F) correponds to the six W -fusion graphs calculated in
the Feynman gauge. As discussed in the Introduction, this
exhibits the unitarity-violating behaviour σ ∼ s2 at high
energy. Isolating the Higgs resonance graph alone (dot-
ted line H) again leads to unitarity-violating behaviour,
but now σ ∼ s.4 Finally, applying the pinch technique as
described in the previous section yields acceptable high-
energy behaviour of the form σ ∼ `n(s) (dash-dotted line
PT).

The ‘bad’ high-energy behaviour of the W -
fusion graphs completely swamps the Higgs resonance be-
haviour. This is illustrated in Fig. 8, which shows the ZZ
invariant mass distribution at two values of the subprocess
energy

√
s, again for MH = 500 GeV. For the W -fusion

graphs contribution, we see the resonance at 500 GeV dis-
appear under the background as

√
s increases. At high√

s the cross section is spread approximately uniformly
over the range (0,

√
s). In contrast, applying the pinch

technique gives invariant mass distributions in which the
resonance is clearly visible at both values of

√
s consid-

ered. Of course the extent to which the Higgs resonance
is visible over the underlying non-resonant diagram con-
tributions depends on ΓH . Figure 9 shows the same ZZ
(pinch-technique) mass distribution as in Fig. 8, for MH =
500 GeV and

√
s = 4 TeV, together with the correspond-

ing distributions for MH = 750 GeV and 1000 GeV. No-
tice that, as expected, the resonant peak broadens as MH

increases, becoming barely visible over the non-resonant
contributions at MH = 1000 GeV.

Our final two figures show distributions for the full
(
√

s = 14 TeV) proton-proton cross section, i.e. with par-
ton distributions folded in as in (3.1). In these figures we
compare the pinch-technique (approximate) result with
the full all-diagrams calculation of [3]. Figure 10 shows
the ZZ invariant mass distributions for MH = 500 GeV
and MH = 740 GeV. We see that the resonance region is
indeed very well approximated by the pinch-technique re-
sult. The high-mass tail is also in good agreement with the
full result. Only the low MZZ region below O(400 GeV)
shows any significant difference. Here the large number of
non-W -fusion graphs in the full calculation leads to an
excess over the pinch-technique result. We note, however,
that this low-mass region would in all likelihood be re-
moved by experimental cuts in a realistic analysis.

It is relevant to ask whether other features of the fi-
nal state are well approximated by the pinch-technique
method. As an illustration, we consider the transverse mo-
mentum distribution of the forward jets accompanying the
Z boson pair. Since it may be possible to detect these jets
in the LHC experiments, it is important that the pinch-
technique result gives an accurate description of their pro-
duction properties. Figure 11 shows the predictions for
the inclusive jet pT distribution in the full calculation and
the pinch-technique approximation, for MH = 500 and

4 Notice also the threshold behaviour of this contribution at√
s ' MH .



194 K. Philippides, W.J. Stirling: Restoring good high energy behaviour in Higgs production via W fusion at the LHC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(a)

MH= 500 GeV

MZZ (GeV)

 √s = 2 TeV

 √s = 4 TeV

(b)

dσ
/d

M
Z

Z
(1

0-3
pb

/G
eV

)

0
0.5

1
1.5

2
2.5

3
3.5

0 500 1000 1500 2000 2500 3000 3500 4000
Fig. 8. Invariant mass distribution of the Z boson
pair. The solid line is the pinch-technique result while
the dotted line is the result of the 6 W -fusion graphs
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pair of the pinch-technique result, for different values
of the Higgs mass and for subprocess scattering energy√
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pair for pp → ZZ +2 jets + X at the LHC. The solid
line represents the full calculation in which all elec-
troweak graphs are included. The dashed-dotted line
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the resonant W -fusion and Z-fusion graphs are re-
tained
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Fig. 11. Distributions of the jet transverse momen-
tum for pp → ZZ + 2 jets + X at the LHC. The
solid line represents the full calculation in which all
electroweak graphs are included. The dashed-dotted
line is our approximation in which only the resonant
W -fusion and Z-fusion graphs are retained

740 GeV. A lower MZZ cut is imposed (see above). The
distributions are indeed very similar, particularly in shape.
(The small pinch-technique excess can be traced back to
the slightly higher MZZ distribution in Fig. 10.) The ra-
pidity distributions of the jets (not shown) are also very
similar. This gives us confidence that all important kine-
matic features of the ZZ + 2 jets production process are
well reproduced by the pinch-technique method.

4 Conclusions

In this paper we have used the pinch-technique to de-
fine and calculate a W -fusion subamplitude of the full
amplitude for the electroweak process qq → qqZZ. The
pinch-technique amplitude is based on the W -fusion sub-
set of diagrams, and includes the Higgs resonance con-
tribution, i.e. WW → H → ZZ. More importantly, the
pinch-technique amplitude squared is gauge invariant and
the corresponding cross section exhibits good high energy
behaviour. In addition, our numerical studies show that
the pinch-technique gives an excellent approximation to
the full calculation for such quantities as the ZZ invariant
mass distribution, particularly in the region of the reso-
nance, and the rapidity and transverse momentum distri-
butions of the jets accompanying the ZZ pair. Not sur-
prisingly, the expression for the pinch-technique is much
more compact than that for the full amplitude, with a cor-
responding computation time per event which is between
one and two orders of magnitude faster.

In summary, we have demonstrated, in an non-trivial
example, that a meaningful and well defined separation be-
tween signal and background can be achieved even when
they contribute coherently to the same final state. In the
particular case of interest the signal turns out to be domi-
nant while its numerical computation compared to the full
cross section has been expedited enormously. We believe,
therefore, that the pinch-technique amplitude could be a
useful simulation and analysis tool for Higgs production
via W -fusion at the LHC.
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